Weak KAM theoretic aspects for nonregular commuting Hamiltonians

نویسندگان

  • Andrea Davini
  • Maxime Zavidovique
چکیده

In this paper we consider the notion of commutation for a pair of continuous and convex Hamiltonians, given in terms of commutation of their Lax– Oleinik semigroups. This is equivalent to the solvability of an associated multi– time Hamilton–Jacobi equation. We examine the weak KAM theoretic aspects of the commutation property and show that the two Hamiltonians have the same weak KAM solutions and the same Aubry set, thus generalizing a result recently obtained by the second author for Tonelli Hamiltonians. We make a further step by proving that the Hamiltonians admit a common critical subsolution, strict outside their Aubry set. This subsolution can be taken of class C in the Tonelli case. To prove our main results in full generality, it is crucial to establish suitable differentiability properties of the critical subsolutions on the Aubry set. These latter results are new in the purely continuous case and of independent interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QCMA hardness of ground space connectivity for commuting Hamiltonians

In this work we consider the ground space connectivity problem for commuting local Hamiltonians. The ground space connectivity problem asks whether it is possible to go from one (efficiently preparable) state to another by applying a polynomial length sequence of 2-qubit unitaries while remaining at all times in a state with low energy for a given Hamiltonian H. It was shown in [GS15] that this...

متن کامل

Lagrangian Dynamics on an infinite-dimensional torus; a Weak KAM theorem

The space L(0, 1) has a natural Riemannian structure on the basis of which we introduce an L(0, 1)–infinite dimensional torus T. For a class of Hamiltonians defined on its cotangent bundle we establish existence of a viscosity solution for the cell problem on T or, equivalently, we prove a Weak KAM theorem. As an application, we obtain existence of absolute action-minimizing solutions of prescr...

متن کامل

The Lax-Oleinik semi-group: a Hamiltonian point of view

The Weak KAM theory was developed by Fathi in order to study the dynamics of convex Hamiltonian systems. It somehow makes a bridge between viscosity solutions of the Hamilton-Jacobi equation and Mather invariant sets of Hamiltonian systems, although this was fully understood only a posteriori. These theories converge under the hypothesis of convexity, and the richness of applications mostly com...

متن کامل

Behavior of O(log n) local commuting hamiltonians

We study the variant of the k-local hamiltonian problem which is a natural generalization of k-CSPs, in which the hamiltonian terms all commute. More specifically, we consider a hamiltonian H = ∑i Hi over n qubits, where each Hi acts non-trivially on O(log n) qubits and all the terms Hi commute, and show the following 1. We show that a specific case of O(log n) local commuting hamiltonians over...

متن کامل

Effective Hamiltonians and Averaging for Hamiltonian Dynamics II

We extend to time-dependent Hamiltonians some of the PDE methods from our previous paper [E-G1], and in particular the theory of “effective Hamiltonians” introduced by Lions, Papanicolaou & Varadhan [L-P-V]. These PDE techniques augment the variational approach of Mather [Mt1,Mt2,Mt3,Mt4,M-F] and the weak KAM methods of Fathi [F1,F2,F3,F4,F5]. We also provide a weak interpretation of adiabatic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011